Received 14 August and accepted 24 September 1979

Y. KUMASHIRO E. SAKUMA Electrotechnical Laboratory, 1-1-4 Umezono, Sakura-Mura Niiharigun, Ibaraki, Japan

Comments on "The chemistry of dicalcium silicate mineral"

I read with great interest the review article on $C_2 S^*$ [1], and I wish to raise a few points.

We studied the polymorphic transformation scheme of pure γ -C₂S (stoichiometric value of Ca:Si = 2.85) using a Guinier-Lenné hightemperature X-ray camera [2]. From our observations we presented a revised stability diagram of C₂S polymorphic forms. The transformation scheme in Fig. 1 is somewhat different to those suggested by Niesel [3] and Midgley [4].

From our investigations it was found that, on heating, γ -C₂S transforms to an orthorhombic phase (named the "transient phase") at 816° C. At 910° C, $\alpha'_{\rm L}$ -C₂S appears. A slow rate of heating (40° Ch⁻¹) yields $\alpha'_{\rm H}$ -C₂S at 1165° C, whereas with rapid heating (100° Ch⁻¹) $\alpha'_{\rm H}$ -C₂S fails to appear even at 1250° C (the limit of the apparatus). During cooling, $\alpha'_{\rm H}$ -C₂S inverts to $\alpha'_{\rm L}$ -C₂S at 1165° C and then to the $\beta_{\rm H}$ phase at 670° C. With further cooling β -C₂S appears at 560° C and finally, at ambient temperatures, a mixture of β - and γ -C₂S is obtained. Samples air-quenched from 1250° C also produce a mixture of β - and

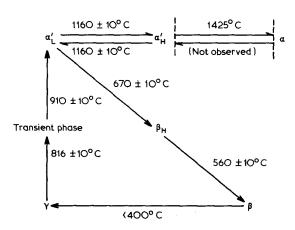


Figure 1 Stability diagram of C₂S polymorphs.

 γ -phases at room temperatures. The crystallite particle size is seen to affect the transformation temperatures by only 10° C [3]. No evidence of superstructuring between the α'_{H} - and α'_{L} -C₂S was found [5]. The cell parameters of all these forms have been calculated from the X-ray powder patterns using a set of standard computer programs (COMPUTE, DECAL and modified CELL) (Table I). Our β_{H} -phase is seen to resemble Midgley's α'_{m} -C₂S [4].

Form	a (Å)	b (A)	c (A)	β (°)	Crystal system	Space group
γ -C ₂ S	5.086	11.213	6.773	_	Ortho	Pbnm
β-C ₂ S	5.427 ± 0.004	6.629 ± 0.004	9.148 ± 0.006	94.57	Mono	$P2_1/n$
$\beta_{\mathbf{H}} - C_2 S$	5.364 ± 0.009	6.709 ± 0.012	9.299 ± 0.016	91.51	Mono	P2
Trans. phase	10.978 ± 0.015	18.567 ± 0.026	6.740 ± 0.010	-	Ortho	$Cmc2_1$
$\alpha'_{L}-C_{2}S$	11.020 ± 0.030	18.696 ± 0.050	6.758 ± 0.020	_	Ortho	Pmcn
$\alpha'_{\rm H}$ -C ₂ S	10.734 ± 0.009	19.072 ± 0.016	6.656 ± 0.006		Ortho	Pnmm

TABLE I Lattice parameters of C₂S polymorphs

*Cement chemists' standard notation: C = CaO, $S = SiO_2$, $N = Na_2O$, $P = PO_3$.

0022-2461/80/051324-02\$02.20/0 © 1980 Chapman and Hall Ltd.

From crystallochemical evidence we suggested that the $\gamma \rightarrow$ transient phase transformation involves no change in symmetry. The transition is monotropic and of distortional nature. The transient phase $\rightarrow \alpha'_L$ -C₂S conversion takes place with a small adjustment in the axes of the two forms. A displacive transformation is plausible in the case of $\alpha'_L \leftrightarrow \alpha'_H$ -C₂S transition. $\beta_H \rightarrow \beta$ -C₂S transformation is again displacive involving small changes in axial dimensions of the two forms. The $\beta \rightarrow \gamma$ -C₂S change, however, is monotropic, and large structural changes take place at a fairly low temperature.

Some 200 belite (C_2S) grains from 21 different commercial clinkers were analysed under the scanning electron microscope fitted with an energy dispersive spectrometer [6]. The minor elements detected in the grains were Na, Mg, Al, P, S, K, Ti, V, Cr, Mn and Fe, although not all are necessarily present in every grain except for Al. As would be expected, Ti, V, Cr and Mn, if present in a belite grain, occur only in trace amounts (< 0.05% by weight).

Based on microprobe analyses, we proposed molar compositions of $Ca_{2-x}Mg_xSiO_4$ (x = 0.22) and $Ca_2Si_{1-y}AlO_{4-y/2}$ for natural bredigite and larnite, respectively [6].

X-ray patterns of a number of laboratorysynthesized samples of C_2S polymorphs were studied and their lattice parameters calculated [2].

 β -C₂S: samples were stabilized using the following additives:

 $\begin{array}{ll} (i) & MgO + Al_2O_3 + Na_2O \\ (ii) & MgO + Al_2O_3 \\ (iii) & MgO + K_2O + Na_2O \\ (iv) & H_3BO_3 \\ (v) & Mn_2O_3 \\ (vi) & V_2O_5 \end{array}$

An interesting feature observed in the X-ray patterns was the minor displacement of diffraction lines between 32 and $33^{\circ}2\theta$, containing the reflections $\overline{103}$, $\overline{121}$, 200, 022 and 121. Variation in cell dimensions and in intensity of diffraction lines was evident.

 α' -C₂S: a sample of MgO + K₂O-stabilized α' -C₂S [8] was seen to have the following lattice dimensions: $a = 5.533 \pm 0.037$, $b = 9.151 \pm 0.062$, $c = 6.846 \pm 0.046$ Å, space group Pmcn, whereas a 0.25% C₂ NP-stabilized sample yielded an orthorhombic unit cell with lattice parameters a = 5.671 ± 0.055 , $b = 9.311 \pm 0.091$, $c = 6.866 \pm$ 0.068 Å, space group Pmcn. Midgley [4] claims this to be $\alpha'_{\rm m}$ -C₂S.

 α -C₂S: an Fe₂O₃ + Na₂O + Al₂O₃-stabilized sample [8] gave a hexagonal cell with a = b =5.499 ± 0.035, $c = 7.727 \pm 0.050$ Å, $\gamma = 120^{\circ}$.

The cell parameters obtained for β - and α -C₂S closely resemble those of other workers, but the X-ray patterns of the room-temperature stabilized forms of α' -C₂S vary between themselves and also show significant differences from the high-temperature X-ray patterns of the pure α'_{H} - and α'_{L} -phases.

References

- 1. S. N. GHOSH, P. B. RAO, A. K. PAUL and K. RAINA, J. Mater. Sci. 14 (1979) 1554.
- 2. S. L. SARKAR, PhD Thesis, University of London (1977).
- 3. K. NIESEL, Silicates Industriels 37 (1972) 136.
- 4. H. G. MIDGLEY, Proceedings of the VIth International Symposium on the Chemistry of Cement, Moscow (1974).
- 5. M. REGOURD and A. GUINIER, ibid.
- P. BARNES, J. W. JEFFERY and S. L. SARKAR, Cem. Conc. Res. 8 (1978) 559.
- 7. S. L. SARKAR and J. W. JEFFERY, J. Amer. Ceram. Soc. 61 (1978) 177.
- G. YAMAGUCHI and S. TAKAGI, Proceedings of the International Symposium on the Chemistry of Cement, Tokyo, Vol. 1 (1968) p. 181.

Received 14 August and accepted 24 September 1979

> S. L. SARKAR* Marine Technology Centre, Imperial College, Prince Consort Road, London, UK

*Present address: Department of Geology and Mineral Sciences, University of Ilorin, Ilorin, Nigeria.